BLOCK-iT™ RNAi Designer
The easiest way to design effective RNAi molecules for great results
See also:
Synthetics for in vivo RNAi
Target Design Options:
Stealth RNAi™ siRNA
miR RNAi
shRNA
siRNA to Stealth RNAi™ siRNA
siRNA to shRNA
Step 1: Enter an accession number or provide a nucleotide sequence
Accession number:
OR
Nucleotide sequence:
Enter only A, C, G, T, and U. See the online Help for additional information
Step 2: If you entered an accession number in Step 1, select regions for target design
Open reading frame (ORF)
5' UTR
3' UTR
Step 3: Choose database for Blast
Human - Homo sapiens
Mouse - Mus musculus
Rat - Rattus norvegicus
Cattle - Bos taurus
Pig - Sus scrofa
Dog - Canis familiaris
Frog - Xenopus laevis
Chicken - Gallus gallus
Fruitfly - Drosophila melanogaster
Worm - Caenorhabditis elegans
Zebrafish - Danio rerio
Mosquito - Anopheles gambiae
No blast
NOTE:
BLAST is used to compare input sequence with sequences in the database to find unique regions against which to design RNAi targets. The databases contain representative gene sequences for that species. Blast databases were updated on March 23, 2013 and the design output reflects the most up-to-date designs.
Step 4: Choose minimum and maximum G/C percentage
Minimum G/C percentage:
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
Maximum G/C percentage:
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
Step 5: Select vector and strand orientation and click "RNAi Design" to design shRNA.
Vector:
pENTR™/H1/T0
pENTR™/U6
NOTE:
Choose
pENTR™/H1/TO
for inducible shRNA expression and
pENTR™/U6
for constitutive expression. If you want to design shRNA oligo compatible with both vectors, select pENTR™/U6 vector.
Strand orientation:
Sense-loop-antisense
Antisense-loop-sense
Guarantee:
The BLOCK-iT™ Designer uses a proprietary algorithm to design shRNA with the latest resesarch data to optimize for promoter requirements and stem-loop structure. The recommended shRNA sequences designed using the BLOCK-iT™ RNAi Designer have an improved probability over random picking of inducing target gene silencing. However, more than one shRNA may need to be tested for a given gene.
🚨 Attention All Users: QA1 will be down on November 19th and 20th for DR activity in the lower environment for Major Stacks. 🚨
Hamburger Menu Button
Thermo Fisher Scientific Logo
Sign in
Don't have an account ?
Create Account
Products
Antibodies
Cell Culture Media
Chemicals
Chromatography Columns and Cartridges
Lab Equipment
Lab Plasticware and Supplies
Microplates
Oligos, Primers, Probes and Genes
TaqMan Real-Time PCR Assays
Greener Products
See all product categories
Applications
Bioprocessing
Cell Culture and Transfection
Cell and Gene Therapy
Chromatography
Molecular Testing
Digital Solutions
DNA and RNA Extraction and Analysis
Spectroscopy, Elemental and Isotope Analysis
See all applications and techniques
Services
Integrated CDMO-CRO Services
CDMO Services
CRO Services
Custom Services
Enterprise Services
Financial and Leasing Services
Instrument Services
Lab Informatics
OEM and Commercial Supply
Training Services
Unity Lab Services
See all services
Help and Support
How to Order
Instrument Support
Learning Centers
Register for an Account
Technical Support Centers
See all help and support topics
Popular
TaqMan Real-Time PCR Assays
Antibodies
Oligos, Primers & Probes
GeneArt Gene Synthesis
Cell Culture Plastics
Contact Us
Quick Order
Order Status and Tracking
Documents and Certificates
Thermo Fisher Scientific Logo
Search
Thermo Fisher Scientific
Search All
Search
Search button
Search button
Close
Order Status
Quick Order
Sign in
Sign in
Don't have an account ?
Create Account
Account
Check Order Status
Aspire Member Program
Connect: Lab, Data, Apps
Custom Products & Projects
Services Central